Saturday, January 22, 2011

Moving mesh or MRF?

Christopher H. Connor, Jacobs Sverdrup, USA      
In this article, we describe a recent work in which we compared the advantages and disadvantages of the steady and transient approaches to the analysis of a four-bladed aircraft propeller. In the study, we examined a concept model of a ground based turbo-prop engine operating within an enclosure.
Fig.1a: CAD generated concept design of engine, stand and enclosure Fig. 1b: CAD geometry built in STAR-Design– the separately created propeller mesh was inserted into the cylindrical region.

Fig.1a: CAD generated concept design of engine, stand and enclosure

Fig. 1b: CAD geometry built in STAR-Design– the separately created propeller mesh was inserted into the cylindrical region.

As engineers routinely applying CFD to a wide range of turbomachinery and aerospace applications, we often face technical judgments as to the applicability of certain numerical approaches or physical models used in a simulation. One such judgment for rotating machinery relates to the choice of either applying a time accurate transient moving mesh approach or a simplified steady-state multiple rotating frames (MRF) approach. This modeling decision can be critical especially when simulating the flow through rotating systems which contain a low blade count.

Fig. 2: Surface mesh used to begin automated pro-STAR trim mesh, (rotating region inside cylinder) Fig. 3: Final trim mesh; propeller mesh was trimmed separately from surrounding trim mesh and then assembled for flow analysis

Fig. 2: Surface mesh used to begin automated pro-STAR trim mesh, (rotating region inside cylinder)

Fig. 3: Final trim mesh; propeller mesh was trimmed separately from surrounding trim mesh and then assembled for flow analysis

We used STAR-CD to consider several facets of the propeller design, principally:
i) maximum torque load on the propeller blades
ii) time varying cyclical loading of the blades
iii) mass flow through the system
iv) engine outlet temperature
v) flow over the tip of the propeller blades

Our overriding question concerned the trade off between the expense of the numerical calculation technique and the accuracy of the solution it predicted. In order for a computational method to qualify as a valid and useful simulation technique, calculations are required to be both accurate and practical. We needed to understand whether the Implicit MRF approach could meet the technical challenge and whether the transient moving mesh approach could meet the schedule requirements of the project.

Fig. 4: Pressure boundaries assigned to inflow and outflow regions Fig. 5: Comparative view of velocity magnitude for steady and transient analyses (isometric view)

Fig. 4: Pressure boundaries assigned to inflow and outflow regions

Fig. 5: Comparative view of velocity magnitude for steady and transient analyses (isometric view)

The CAD geometry of the concept design examined in the study was built in STAR-Design (Figure 1). All the components were created and meshed separately, using trimmed cell technology (Figure 2) before being assembled into a single model (Figure 3). The final assembly consisted of 1.75 million computational cells. Fixed pressure boundaries were prescribed at inflow and outflow regions, and
rotating wall boundaries to the surface of the propeller (Figure 4). The flow was considered compressible, consisting of large temperature gradients in the system due to the hot exhaust of the gas turbine engine. Identical flow properties, solver settings and geometric configurations were simulated for both the MRF and moving mesh approaches.
Fig. 6: Individual propeller blades were monitored for torque loads Fig. 7. Transient analysis shows cyclic torque loading of blades as they rotate through 360 degrees (3 of the 4 blades are monitored here; peak-to-peak represents a single propeller revolution)

Fig. 6: Individual propeller blades were monitored for torque loads

Fig. 7. Transient analysis shows cyclic torque loading of blades as they rotate through 360 degrees (3 of the 4 blades are monitored here; peak-to-peak represents a single propeller revolution)


Our analysis revealed that both the steady MRF and the transient moving mesh approaches proved meritorious. The steady analysis was computationally stable and converged monotonically in a timely fashion. The steady simulation captured the basic flow structure across the propeller tips, as well as the temperature mixing of the engine exhaust. The MRF predicted a fixed torque loading on the blades; however, due to the steady nature of MRF, the analysis is not able to predict the cyclic torque loading that the blade experiences naturally during rotation. The steady analysis provided quick, general results in which the gross flow structure was predicted (Figure 5).|

The transient moving mesh analysis provided more than the gross flow structure; the analysis additionally provided critical engineering data concerning the effects of the blade rotation in time. Specifically, we noticed a high torque loading experienced by all blades as they passed a particular point in the 360° revolution (Figure 6 & 7). The time accurate results of transient blade loading provided torque spike magnitudes; the results allowed us to determine if additional engineering of the engine mounting system was warranted to mitigate the high cyclic loading. The transient analysis also captured the temperature mixing as did the steady analysis, and predicted a system mass flow rate 4% higher than that of the steady case. The transient simulation required approximately 4-6 times more computational runtime to establish a “cyclically steady” solution, yet the analysis provided more insight for understanding the flow physics of the system.

From our examination, we conclude that the transient moving mesh analysis more appropriately captures high resolution, high accuracy flow behavior and cyclic fatigue characteristics. Although MRF is less expensive and acceptable for understanding the basic flow structure, the steady state MRF approach is not able to provide potentially critical time accurate information.

Jacobs Sverdrup provides a range of advanced technology engineering services to government and industry. One of our core customer bases is the aerospace and defense industry, for which we deliver a full range of design and build services for aero-propulsion and space systems facilities.

For further information, contact: connorch@sverdrup.com

Tuesday, November 16, 2010

Making A Big Deal of Small Wind

When it comes to energy, General Electric is all about big: big coal plants, big nuclear plants, big wind towers. So why would the $183-billion a year industrial conglomerate bother to invest a small amount of money -- just a few million dollars – in a small company that makes wind turbines so small they can be erected in your backyard?

Perhaps because, under the right circumstances, homeowners can make their own wind-generated, low-carbon, electricity for less than it costs to buy power from their local utility. This could turn small wind into a big deal.

Southwest Windpower, the company backed by GE, has made quite a few of those small turbines–more than 140,000 since the company was started back in 1987. The company manufacturers the wind turbines in Flagstaff, Arizona, and in a 50-50 venture with a Chinese partner in Ningbo, China. Revenues were about $24 million last year.

I met Frank Greco, Southwest Windpower's CEO, last month at the GE research center in Niskayuna, N.Y., where GE Capital was showcasing some of its venture investments. GE invested in Southwest Windpower early this year, along with Altira, Rockport Capital Partners, NGP Energy Technology Partners, and Chevron Technology Ventures, Chevron's venture capital arm. Collectively, they invested $10 million.

Greco told me he is grateful for the infusion of cash–particularly since it comes at a momentwhen raising money is very, very hard–but he is even more pleased about getting access to GE's technology and relationships. "They're already working with us on a blade coating," Greco says. "There's a natural synergy between the two companies." Besides, he added, "GE owns billions of dollars of commercial real estate. There's tremendous potential for commercial deployment where it makes sense."

Two factors are now driving Southwest Windpower's growth–generous government subsidies for small wind and a product called the Skystream (above and below, in various settings) that the company introduced three years ago that ties to the electricity grid.

Before then, most small wind turbines were sold for use off the grid. "The market was remote homes, telecommunications sites, offshore oil platforms, even sailboats -- for charging batteries," Greco says. "We've done pilot programs as far away as the Maldive Islands."

Now the uses are much more varied. Wind turbines can be found in backyards, beside small businesses that buy one to attract attention and in parking lots where they are used to power lighting that's on all night. More than 100 elementary and middle schools in Kyoto, Japan, installed Southwest turbines to teach their students about wind energy.

The economics of a backyard turbine look something like this: Fully installed and operational, a 2.4 kW Skystream costs about $12,000 to $15,000. Buyers get a 30% federal investment tax credit as well as state tax credits or rebates that, in some places, bring the after-tax cost down to as little as $5,000 or $6,000. (More than 20 states offer some subsidies.) In places where there are high winds and high electricity prices, that's a bargain.

"In some cases, the payback is less than five years," Greco says."In places where the utility rates are low and the wind resource is low, the payback can be 10 years or more."

Designing small wind turbines is not simple. "The challenge for small wind is that it needs to be productive in relatively low wind environments, where most people live, and on a relatively short tower, about 30 to 45 feet," Greco said. "Plus the turbine is living in an environment where people live. So you have aesthetics and noise emissions that you have to be very aware of."

What's not clear to me is how the costs of generating electricity from small wind turbines compares to the cost of building large wind towers or solar thermal power plants. Wouldn't the utility-scale plants be more efficient, even after the costs of transmission lines are taken into account?

Then again, take a look at the small wind turbines below. They're awfully attractive. You can justify them as kinetic sculptures, with a little electricity thrown in.
By a Maryland church 
                    By a Maryland church
By a Utah restaurant


                                          By a Utah restaurant

By a McDonald's in Fortaleza, Brazil

By a McDonald's in Fortaleza, Brazil

Wind, Solar Top Walmart Food Distribution Center

Wind, Solar Top Walmart Food Distribution CenterBALZAC, AB — The newest Walmart Canada fresh and frozen food distribution center is expected to be 60 percent more energy efficient that Walmart's other centers and is topped by wind turbines and solar panels.

The $115 million, 400,000 square foot facility in Balzac, Alberta, features the company's first foray with vehicles powered by hydrogen fuel cells and with on-site wind turbines and solar thermal panels.

Two 30-kilowatt wind turbines are on the ground of the center, which distributes frozen and fresh goods to 104 stores in western Canada, and 16 solar thermal panels will provide energy for heating water for offices and maintenance.

The refrigeration system in the center includes demand-response capabilities so that it can pull electricity during off-peak times. Ammonia is used as a coolant in the system instead of chlorofluorocarbons like Freon, making the cooling system 33 percent more energy efficient.

To avoid wasting energy from losing cool air, the center's doorways between areas that are different temperatures were designed to have smaller gaps between them and the vehicles that will be going through them, windows were eliminated from dock door designs, electronic monitors were installed to make sure no doors are not accidentally left open, and automatic doorways create air flows that keep air from going into areas with different temperatures.

The warehouse and parking lot are lit by LEDs, which provided an added benefit for refrigerated areas since they don't produce heat like incandescent lights.

Also, the 71 vehicles used to move goods around are powered by hydrogen fuel cells instead of lead acid batteries, halving vehicle-related carbon dioxide emissions.

All together, Walmart Canada expects all of the center's energy features to help it avoid $4.8 million in energy expenses over five years.

Balzac distribution center - Courtesy Walmart

Thursday, September 16, 2010

阻力定律和升力定律

阻力定律和升力定律

想要把风力的动能转化成电能,首先要先把动能转化成机械能,然后再将机械能转化成电能。第一步转化,是通过风电机叶片来实现的。

从动能到机械能的转化,有两个定律:阻力定律和升力定律。

阻力定律

风会对切割它移动方向上的任意面积A 形成一个力,这个力就是阻力。

图:阻力作用为推动力

阻力根下面的参数成比例关系:

  • 风速 v 的平方
  • 切割面积 f
  • 该面积的阻力系数 cw
  • 空气密度 ρ

阻力系数cW (W是德语里“阻力”的第一个字母) 也叫做阻力附加值或者直接称为 cW-值。这个值是用来表示某个物体对空气形成阻力的大小的,可以在风洞里进行测定。

cW 值越小,空气阻力也就越小。比如一个圆盘横向对风的Cw 值大约是1.11,而方盘大约是1.10,球体大约是0.45。

在汽车工业中,工程师们都在研究如何将汽车的cW 值变的更小,这样汽车在行进时的阻力就会最小化。比如丰田的Prius的cW值是0.26,而大众的Golf是0.325,雪铁龙的2CV阻力系数是0.50,一辆普通的卡车阻力系数是0.8。

古老的波斯风车(世界上最早的风车)是通过利用阻力来运作的。如上图所示,风车建在墙内,当风吹过开口,就会推动暴露的叶片,从而带动整个风车旋转。

风速计也是利用阻力原理来实现的。风杯风速计上风杯的cW-值分别是1.33和0.33(迎风时和背风时)。风杯迎风时的阻力要比背风时的阻力大很多,所以风杯风速计才会迎风旋转。


通过阻力定律来运动的转子无法转动的比风速更快(增速值小于1),属于亚风速转子。这种转子能量损失较大,效率系数(流体动力学上的作用参数)非常小。(波斯风车大概0.17,风杯风速计大概0.08)

升力定律

现代风电机的叶片是通过升力定律来实现转动的,升力是推动力。

图:升力作为动力
(Auftrieb: 浮力;
schnelle Luftbewegung:速度快的空气运动;
langsame Luftbewegung:速度慢的空气运动)

飞机、直升机或者风电机的叶片顶部的面积要大于底部的面积。由于空气在顶部划过的距离更长,所以顶部空气运动的速度要比底部的空气速度要快,这样就产生了升力。

图:叶片周围的压力分布
(Profilsehne:中间线;
Anstellwinkel:偏角; Anstroemgeschwindigkeit:空气流动速度; Ueberdruck:高压; Wiederstand:阻力; Auftrieb: 升力; Unterdruck:低压)

根据伯努利方程,在同一高度上,叶片的底面或者顶面的动态压力和静态压力和平衡。
(下面的计算式中,1/2 v²那项上应该乘以空气密度。谢谢lorraine网友纠正,我暂时没有找到合适的图来更改下面的算式,特此说明一下。)

由于顶端的空气流动比底端的快,从而使顶端产生低压,而底部产生高压:这就是飞机飞行的原理,也是风电机叶片转动的原理。

升力的大小跟风速 v 的平方、作用面积 f 、空气密度 ρ 以及浮力参数 cA 成正比。对于叶片(或者翅膀) 的顶面和底面来说就是(A=升力):

作用面积就是叶片的面积,等于叶片的长乘宽;浮力参数Ca取决于攻角 α 。通过调整攻角可以影响升力

阻力W在飞机和风电机叶片作用过程中也会出现。但是,当攻角很小的时候,阻力值十分小(等于浮力的20分之一到百分之一)。 阻力的方向总是跟风向相反,在攻角大于20度的时候,阻力会显著增大。

滑动系数

滑动系数 ε 是用来表述浮力参数和阻力参数关系的一个值,它可以用来决定叶片的好坏。

滑动系数与叶片的切面形状和偏角有关。滑动系数越高,空气能量损失越小,叶片的作用效果越大。好的叶片滑动系数可以达到100甚至更高。

本节翻译:xieyaqian 附带原文参考:

Um die kinetische Energie des Windes in elektrische Energie umzuwandeln muss zuerst die kinetische Energie in mechanische Energie gewandelt werden, die danach in elektrische Energie umgewandelt wird. Dieser erste Schritt wird durch den Rotor der Windkraftanlage realisiert.

Für diese Umwandlung gibt es zwei Prinzipen: das Widerstandsprinzip und das Auftriebsprinzip.

Widerstandsprinzip

Der Wind schiebt jede Fläche A quer zu seiner Richtung und es entsteht eine Kraft die die Fläche bewegt: die Widerstandskraft.

Abb: Luftwiderstand als Antriebskraft

Die Widerstandskraft ist proportional zu:

  • dem Quadrat der Windgeschwindigkeit v
  • der Fläche f
  • dem Widerstandskoeffizient cw der Fläche
  • der Luftdichte ρ

Der Widerstandskoeffizient cW (W für Widerstand) wird auch Widerstandsbeiwert oder cW-Wert genannt. Er ist ein Maß, um den Luftwiderstand des Körpers zu charakterisieren und wird z.B. in einem Windkanal ermittelt.

Je kleiner der cW ist, desto geringer ist der Luftwiderstand. Cw nimmt beispielsweise für eine Kreisplatte quer zum Wind einen Wert von 1,11, für eine quadratische Platte 1,10, und für eine Kugel 0,45 an.

In der Fahrzeugindustrie forschen die Ingenieure daran, diese Koeffizienten zu reduzieren um die Widerstandsverluste zu minimieren. cW-Werte sind beispielsweise gleich 0,26 für einen Toyota Prius, 0,325 für einen VW Golf V, 0,50 für einen Citroen 2CV und 0,8 für einen LKW.

Alte persische Windmühlen (die ältesten Windräder der Welt) sind Widerstandsläufer. Eine Mauer schirmt die Hälfte des vertikalen Rotors gegen den Wind ab. Der Wind weht auf die offene Rotorhälfte, schiebt die Blätter und treibt ihn an.

Das Schalenkreuzanemometer ist auch ein Widerstandsläufer. Der cW-Wert einer offenen und einer geschlossenen Halbkugel ist gleich bzw. 1,33 bzw. 0,33. Der Widerstand der offenen Halbkugel ist größer, als der der geschlossenen Kugel. Deshalb rotieren die Schalen.

Die Widerstandsläufer können sich nicht schneller als der Wind drehen (die Schnelllaufzahl ist niedriger als 1). Sie sind Langsamläufer. Die Verluste sind groß und der Leistungsbeiwert (aerodynamische Wirkungsgrad) sehr gering. (z.B. 0,17 für die persische Windmühle, 0,08 für das Schalenkreuzanemometer.)

Auftriebsprinzip

Bei modernen Windkraftanlagen werden die Blätter durch das Auftriebsprinzip bewegt. Die Antriebskraft ist die Auftriebskraft.

Abb: Auftriebsprinzip als Antriebskraft

Die Fläche der Oberseite eines Flugzeug-, Hubschrauber- oder Windkraftanlagen-Flügels ist größer als die der Unterseite. Da die Länge größer ist muss sich die Luft an der Oberseite schneller bewegen als die an der Unterseite.

Abb: Luftdruck an einem Blatt

Bei gleicher Höhe besagt die Bernoulli-Gleichung, dass die Summe aus dynamischem Druck und statischem Druck einer Seite konstant ist.

An der Oberseite ist die Luftgeschwindigkeit vober größer als an der Unterseite. Es resultiert daraus ein Unterdruck an der Oberseite und ein Überdruck an der Unterseite: auf Grund dieser Druckverhältnisse kann ein Flugzeug abheben und fliegen. Das gleiche Prinzip wird auch dem Rotorblatt einer Windkraftanlage genutzt, um es zu bewegen.

Die Auftriebskraft nimmt mit dem Quadrat der Windgeschwindigkeit v, der Tragfläche f, der Luftdichte ρ und dem Auftriebsbeiwert cA zu. Für die Ober- bzw. Unterseite des umströmten Flübel heißt das:

Die Fläche f ist die Tragfläche, und ist gleich der Breite Mal der Länge des Flügels. Der Auftriebsbeiwert Ca ist abhängig vom Anstellwinkel α. Mit der Anpassung des Anstellwinkels kann die Auftriebskraft beeinflusst werden.

Die Widerstandskraft W tritt auch bei Flugzeug- und Windkrafanlagenflügeln auf, bleibt aber bei einem geringen Anstellwinkel sehr klein (20 bis 100 Mal niedriger als die Auftriebskraft). Sie ist immer gegen die Windrichtung gerichtet. Ab einem Anstellwinkel von 20 Grad beginnt die Widerstandskraft größer zu werden.

Gleitzahl

Die Gleitzahl ε ist das Verhältnis zwischen dem Auftriebsbeiwert cA und dem Widerstandsbeiwert cw und bestimmt die Güte des Blattes.

Die Gleitzahl hängt von dem Blattprofil und dem Anstellwinkel ab. Je höher die Gleitzahl ist, desto geringer ist der Luftwiderstandsverlust und umso besser ist der Wirkungsgrad. Gute Profile erreichen eine maximale Gleitzahl von 100 und mehr.

Tuesday, August 31, 2010

风机的叶尖速比

风机的叶尖速比

叶尖速比是用来表述风电机特性的一个十分重要的参数。它等于叶片顶端的速度(圆周速度)除以风接触叶片之前很远距离上的速度;叶片越长,或者叶片转速越快,同风速下的叶尖速比就越大。

.

根据叶尖速比的不同,我们可以把风电机分成两类:慢速比风电机和快速比风电机:

慢速比:

慢速比风电机的速度比最大为2.5 。所有以阻力原理作用的风电机的叶尖速比都小于1,属于慢速比风电机。

浮力原理作用的风电机,如果其叶尖速比在1到2.5之间,也被称为慢速比风电机。Westernmills和某些风力泵的叶尖速比大概是1,而Bock风车以及荷兰风车的叶尖速比大概是2。

快速比:

快速比风电机是指按照浮力原理作用的风电机,并且其叶尖速比在2.5到15之间。几乎所有的现代风电机(叶片数一到三)都属于此类。

叶尖速比对风电机的建造结构和形状有很大的影响,比如:

叶片转速: 如果叶片长度一定,那么叶尖速比越大,叶片的转速也就越快。只有一个叶片的风电机,其叶尖速比很高,旋转速度也要比三叶片的风电机快的多。 需要注意的是,风力泵的叶尖速比虽然属于慢速比机械,但旋转速度一般都很快。原因是其转动直径很小,最终圆周速度相对低很多,所以属于慢速比机械。

叶片数: Westernmills的叶尖速比比较低(大约为1),所以需要更多的叶片来遮挡风,一般有20到30个叶片;荷兰风车的速度比大约为2,一般有4个叶片。现代三叶片风电机的叶尖速比大约为6,而一个叶片的风电机,其叶尖速比大概为12。

叶片切面: 快速比风机的叶片一般都设计的细长而薄,其原因就是叶片切割风的时候,与风的相对速度十分高。(站长注:这段我看不懂,只是照原文翻译。)

风机的转化效率系数: 快速比风机由于产生的涡流损失要比慢速比风机低很多,所以其作用系数要明显比慢速比的风机高。一般慢速比风机的转化效率系数cP在0.3到0.35之间,而快速比的风机能够达到0.45到0.55。

本节翻译:xieyaqian 附原文参考:

Die Schnelllaufzahl einer Windkraftanlage ist ein sehr wichtiges Merkmal um die Maschine zu charakterisieren.

Die Schnelllaufzahl ist gleich die Blattspitzengeschwindigkeit (Umfangsgeschwindigkeit) geteilt durch die Windgeschwindigkeit (weit vor dem Rotor).

Je länger die Blätter und je schneller die Rotordrehzahl, desto größer die Schnelllaufzahl bei gleicher Windgeschwindigkeit.

Wir klassifizieren die Windkraftanlagen in zwei Gruppen: Langsamläufer und Schnellläufer:

Langsamläufer:

Langsamläufer haben ein Auslegungsschnelllaufzahl von maximal 2,5.

Alle Widerstandsläufer haben eine Schnelllaufzahl niedriger als 1 und sind Langsamläufer.

Auftriebsläufer mit einer Schnelllaufzahl von 1 bis 2,5 sind auch Langsamläufer. In dieser Kategorie finden wir die Westernmills und Windpumpen mit einer Schnelllaufzahl von ca. 1; Bockwindmühle und Holländerwindmühle mit einer Schnelllaufzahl von 2.

Schnellläufer:

Schnellläufer sind Auftriebsläufer mit einer Schnelllaufzahl von 2,5 bis 15. In dieser Kategorie finden wir alle Strom erzeugende Windkraftanlagen mit einem bis drei Rotorblätter.

Die Schnelllaufzahl beeinflusst stark die Bauart und Bauform einer Windkraftanlage, wie zum Beispiel:

die Rotordrehzahl: für eine bestimmte Blattlänge, je größer die Schnelllaufzahl ist, desto schneller die Rotordrehzahl. Einblatt-Anlagen, mit einer sehr hohen Schnelllaufzahl, laufen viel schneller als eine Dreiblattanlage. Anzumerken ist, dass Windpumpen meistens Langsamläufer sind, sich allerdings ziemlich schnell drehen. Da der Rotordurchmesser relativ klein und die Umlaufgeschwindigkeit relativ niedrig ist, sind auch sie Langsamläufer. der Anzahl der Rotorblätter: Westernmills benötigen wegen ihrer niedrigen Schnelllaufzahl (ca. 1) eine hohe Flächenbelegung der Rotorkreisfläche, und sind mit 20 bis 30 Blättern gebaut. Hollandmühlen mit einer Schnelllaufzahl von 2 haben nur 4 Blätter. Stromerzeugende Windkraftanlagen mit drei Blätter haben ein Schnelllaufzahl von ca. 6, bis auf Einblatt-Maschinen, die eine Schnelllaufzahl von 12 haben. (Siehe auch: Anzahl der Blättern)

das Blattprofil: Schnellläuferblätter sind schlank und dünn, weil die relative Luftgeschwindigkeit an den Blättern sehr hoch ist (Siehe auch Blattprofil).

der Leistungsbeiwert cP der Maschine: die Schnellläufer haben deutlich bessere Wirkungsgrade als ein Langsamläufer wegen niedrigerer Drallverluste. Der maximale Leitungsbeiwert cP,max beträgt für einen Langsamläufer ca. 0,3 bis 0,35 und für einen Schnellläufer ca. 0,45 bis 0,55.

Friday, August 27, 2010

When is Wind Energy Noise Pollution?

When is Wind Energy Noise Pollution?
by Stephen Lacey, Editor
Published: 2010年8月26日
Maine -- As more wind projects are developed closer to communities in densely populated areas, a number of homeowners within close range are complaining about noise. This often raises the question: "When does wind become an unacceptable source of noise pollution?"


The question isn't easy to answer. While states and local communities set objective decibel standards for highways, airports and wind projects, “noise” is very subjective. Some people are not at all troubled by the low-frequency sound of an operating wind turbine. Others are extremely sensitive to the sound and report being in a constant state of agitation.

The small island of Vinalhaven in Maine's Penobscot Bay offers an interesting case study. Since Fox Islands Wind installed 3 GE 1.5 MW wind turbines on the island community last fall, a group of residents within a half mile of the turbines have complained that the turbines are not only too loud, but sometimes psychologically disturbing.

While it is a small group of people being affected by the turbines, the issue has gotten a lot of attention – even attracting experts from the National Renewable Energy Laboratory who have gone to the island to study both objective sound levels and subjective reactions to the turbines.



Vinalhaven is a very peaceful, rural community. One of the main contentions of the affected residents is that the Maine state compliance levels – 55 decibels during the day and 45 decibels at night – are too loud for such a rural area. They also claim that the developer, Fox Islands Wind, misled them into believing that ambient sounds would cover up the turbines.

Even though Fox Islands Wind officials say they are in compliance with state noise standards, they are looking at some possible alterations such as lowering the cut-out speed of the machines, installing noise cancellation equipment in homes or changing out parts on the turbines.

Of course, any changes would affect the economics of the project and raise electricity prices for people on the island. For a fishing community dealing with a high cost of living and depressed prices for lobster, that could be a difficult pill to swallow. Because the vast majority of islanders strongly support the project, tension has arisen between the small number of impacted homeowners and the rest of the community.

The 45 decibel limit is lower than compliance levels for airports, factories and highways. People seem to be able to live around those. So why do wind turbines make people so angry? Well, the obvious answer – at least in rural areas like Vinalhaven – is that 45 decibels is still a significant increase in sound levels. It can substantially change the local soundscape. If that reality is not properly communicated, the agitation may increase.

But the other answer is less clear. It revolves around the quality of wind farm noise itself. Perhaps there is something in the low-frequency whooshing of a wind turbine that makes it more difficult for people to listen to.

“It's interesting that we're getting such high annoyance at these lower sound levels compared to other things,” says Jim Cummings, founder of the Acoustic Ecology Institute. “There's now research going on into the quality of this noise and how it impacts people.”

Because industrial-scale wind within communities is so new, the research around noise problems is also nascent. Some onlookers like Cummings say the lack of a coordinated, objective look at the issue contributes to misinformation and mistrust of the wind industry.

Last year, the Acoustic Ecology Institute put out a report looking at the scattered nature of the research.

The American and Canadian Wind Energy Associations put together a joint study in December of 2009. The National Renewable Energy Laboratory has been giving the issue more attention, undertaking projects like the one on Vinalhaven. And there have been a few notable surveys done in Europe. But there still has been no independent, comprehensive study that has “put a lid” on the issue, says Cummings.

In the meantime, some wind advocates label people with sound complaints as “anti-wind.” At the same time, anti-wind advocates often exaggerate sound issues, saying they represent a public health problem. Without better studies and recognition of the problem, says Cummings, the misinformation and mistrust on both sides will continue.

“The reality is somewhere between,” he says.

For a detailed look at what's happening on Vinalhaven, listen to this week's podcast linked above. We'll visit the island and talk with people on both sides of the issue. It's not all bad – we'll also look at how wind transformed the culture and economy of Roscoe, Texas.